1. Xu J#, Wang H#, Xu R, Li Q, Su Y* , Liu J* , Zhu W (2023). The diurnal fluctuation of colonic antibiotic resistome is correlated with nutrient substrates in a pig model. Science of the Total Environment, 891:164692. 2. Zhang H,Yan X, Lin A, Xia P, Su Y* (2023).Inhibition of ghrelin activity by the receptor antagonist [D-Lys3]-GHRP-6 enhances hepatic fatty acid oxidation and gluconeogenesis in a growing pig model. Peptides,166:171041. 3. Wang H, Li Q, Xu R, Su Y* and Zhu W (2023) Time-restricted feeding affects colonic nutrient substrates and modulates the diurnal fluctuation of microbiota in pigs. Front. Microbiol. 14:1.162482 4. Han H, Su Y*, Yin J. Editorial: Gut microbial response to host metabolic phenotypes, volume II. Front. Nutr. 2023, 10: 1136510. 5. Xu R, Li Q, Wang H, Su Y*, Zhu W. Reduction of Redox Potential Exerts a Key Role in Modulating Gut Microbial Taxa and Function by Dietary Supplementation of Pectin in a Pig Model. Microbiology Spectrum, 2022, 10.1128/spectrum.03283-22. 6. Wang H, Xia P, Lu Z, Su Y*, Zhu W. Time-restricted feeding affects transcriptomic profiling of hypothalamus in pigs through regulating aromatic amino acids metabolism. J Sci Food Agric, 2023, 103: 1578–1587 7. Lin A, Yan X, Wang H, Su Y*, Zhu W. Effects of lactic acid bacteria-fermented formula milk supplementation on ileal microbiota, transcriptomic profile, and mucosal immunity in weaned piglets. Journal of Animal Science and Biotechnology, 2022, 13:113. 8. Wang H, Zhang H, Su Y*. New Insights into the Diurnal Rhythmicity of Gut Microbiota and Its Crosstalk with Host Circadian Rhythm. Animals, 2022, 12, 1677. 9. Yan X, Zhang H, Lin A, Su Y*. Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. Biology 2022, 11, 840. 10. He Zhang, Xiaoxi Yan, Ailian Lin, Pengke Xia, Menglan Jia & Yong Su* (2022). Effect of feeding regimen on circadian activity rhythms of food anticipatory by ghrelin hormone in a pig model, Nutritional Neuroscience, DOI: 10.1080/1028415X.2022.2047436 11. Zhang H, Jia M, Su Y* and Zhu WY. Feeding frequency affects glucose and lipid metabolism through SIRT1/AMPK pathway in growing pigs with the same amount of daily feed. Journal of Nutritional Biochemistry, 2022, 100: 108919. 12. Zhang H, Xia P, Feng L, Jia M and Su Y*. Feeding Frequency Modulates the Intestinal Transcriptome Without Affecting the Gut Microbiota in Pigs With the Same Daily Feed Intake. Front. Nutr. 2021, 8:743343. 13. Xu J, Xu R, Jia M, Su Y*, Zhu W. Metatranscriptomic analysis of colonic microbiota’s functional response to different dietary fibers in growing pigs. Animal Microbiome, 2021, 3: 45. 14. Jia M, Zhang H, Xu J, Su Y*, Zhu W. Feeding frequency affects the growth performance, nutrient digestion and absorption of growing pigs with the same daily feed intake. Livestock Science, 2021, 250: 104558. 15. Wang H, Xia P, Lu Z, Su Y* and Zhu W. Metabolome-Microbiome Responses of Growing Pigs Induced by Time-Restricted Feeding. Front. Vet. Sci. 2021, 8: 681202. 16. Zhang, H.; Ren, E.; Xu, R.; Su, Y*. Transcriptomic Responses Induced in Muscle and Adipose Tissues of Growing Pigs by Intravenous Infusion of Sodium Butyrate. Biology, 2021, 10, 559. 17. Wang H, Ren E, Xiang X, Su Y*, Zhu W. Dynamic Changes in Serum Metabolomic Profiles of Growing Pigs Induced by intravenous Infusion of Sodium Butyrate. Metabolites, 2020, 10: 20. 18. Wang H, Xu R, Zhang H, Su Y*, Zhu W. Swine gut microbiota and its interaction with host nutrient metabolism. Animal Nutrition, 2020, 6:410-420. 19. Xu R, Wang J, Lin C, Su Y*. Effects of Early Intervention with Antibiotics and Maternal Fecal Microbiota on Transcriptomic Profiling Ileal Mucusa in Neonatal Pigs. Antibiotics, 2020, 9: 35. 20. Wang J, Xu R, Xiang X, Su Y*, Zhu W. Transcriptomic and metabolomic responses in the livers of pigs to diets containing difffferent non-starchy polysaccharides. Journal of Functional Foods, 2020,64: 103590. 21. Xu R, Lu Y, Wang J, Liu J, Su Y*, Zhu W. Effects of the different dietary fibers on luminal microbiota composition and mucosal gene expression in pig colons. Journal of Functional Foods, 2019, 59: 71-79. 22. Lin C H#, Wan J J#, Lu Y, Chen X, Su Y*, Zhu W. Active bacterial communities of pig fecal microbiota transplantation suspension prepared and preserved under different conditions. AMB Express, 2019, 9: 63. 23. Zhang H, Liu J, Zhang X, Wang J, Su Y*, Zhu W. Transcriptomic Responses in the Livers and Jejunal Mucosa of Pigs under Difffferent Feeding Frequencies. Animals, 2019, 9: 675. 24. Wan J, Lin C, Su Y*, Zhu W. Effects of early intervention with maternal fecal bacteria and antibiotics on liver metabolome and transcription in neonatal pigs. Frontiers in Physiology, 2019, 10: 171. 25. Lian C, Wan J, Su Y*, Zhu W. Effects of Early Intervention with Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite Proles of Piglets. Metabolites, 2018, 8: 89. 26. Chen X, Xu J, Su Y* and Zhu W. Effects of Intravenous Infusion With Sodium Butyrate on Colonic Microbiota, Intestinal Developmentand Mucosal Immune-Related Gene Expression in Normal Growing Pigs. Front. Microbiol. 2018, 9:1652. 27. Chen X, Xu J, Ren E, Su Y*, Zhu W. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe, 2018, 49: 30-40. 28. Ren E, Chen X, Yu S, Xu J, Su Y*, Zhu W. Transcriptomic and metabolomic responses induced in the livers of growing pigs by a short-term intravenous infusion of sodium butyrate. Animal, 2018, 11: 2318-2326. 29. Zhou L, Fang L, Sun Y, Su Y*, Zhu W. Effects of a diet high in resistant starch on fermentation end-products of protein and mucin secretion in the colons of pigs. Starch, 2017, 69, 1600032. 30. Yu S, Ren E, Xu J, Su Y*, Zhu W. Effects of early intervention with sodium butyrate on lipid metabolism-related gene expression and liver metabolite profiles in neonatal piglets. Livest Sci, 2017, 195: 80-86. 31. Sun Y, Yu K, Zhou L, Su Y*, Zhu W. Metabolomic and transcriptomic responses in the liver of pigs induced by long-term intake of raw potato starch. J Anim Sci. 2016, 94(3): 1083-1094. 32. Zhou L, Fang L, Sun Y, Su Y*, Zhu W. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig. Anaerobe, 2016, 38: 61-69. 33. Sun Y, Su Y*, Zhu W. Microbiome-metabolome responses in the cecum and colon of pig to a high resistant starch diet. Front Microbiol, 2016, 7: 779. 34. Xu J, Chen X, Yu S, Su Y *, Zhu W. Effects of early intervention with sodium butyrate on gut microbiota and the expression of inflammatory cytokines in neonatal piglets. PloS One, 2016, 11(9):e0162461. 35. Jiang X, Su Y*, Zhu W. Fermentation characteristics of Megasphaera elsdenii J6 derived from pig feces on different lactate isomers. J Integr Agr, 2016, 15: 1575-1583. 36. Sun Y, Zhou L, Fang L, Su Y*, Zhu W. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet. Front Microbiol, 2015, 6: 877. 37. Su Y#, Luo Y#, Zhang L, Smidt H, Zhu W. Responses in gut microbiota and fat metabolism to a halogenated methane analogue in Sprague Dawley rats. Microb Biotechnol, 2015, 8: 529-536. 38. Su Y, Bian G, Zhu Z, Smidt H, Zhu W. Early methanogenic colonisation in the faeces of Meishan and Yorkshire piglets as determined by pyrosequencing analysis. Archaea, 2014: 547908. 39. Su Y, Zhang L, Smidt H, Zhu W. Comparison of fecal methanogenic Archaeal community between Erhualian and Landrace pigs by using denaturing gradient gel electrophoresis and real-time PCR analysis. J Integr Agr, 2014, 13: 1340-1348. 40. Fang L, Jiang X, Su Y*, Zhu W. Long-term intake of raw potato starch decreases back fat thickness and dressing percentage but has no effect on the longissimus muscle quality of growing-finishing pigs. Livest Sci, 2014, 170: 116-123. 41. Bian G, Ma L, Su Y*, Zhu W. The Microbial Community in the Feces of the White Rhinoceros (Ceratotherium simum) as Determined by Barcoded Pyrosequencing Analysis. PLoS ONE, 2013, 8(7): e70103. 42. Su Y, Li B, Zhu W. Fecal microbiota of piglets prefer utilizing DL-lactate mixture as compared to D-lactate and L-lactate in vitro. Anaerobe, 2013, 19: 27-33. 43. Su Yong, Yao Wen, Perez Odette, Smidt Hauke, Zhu Weiyun.16S ribosomal RNA-based methods to monitor changes in hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe, 2008, 14: 78-86. 44. Su Yong, Yao Wen, Perez Odette, Smidt Hauke, Zhu Weiyun.. Increased abundance of Lactobacillus spp. and Streptococcus suis in stomach, jejunum and ileum of piglets after weaning. FEMS Microbiol Ecol, 2008, 66:546-555. 45. Luo Y, Su Y. Lean Breed Landrace Pigs Harbor Fecal Methanogens at Higher Diversity and Density than Obese Breed Erhualian Pigs. Archaea, 2012, 605289. 46. 冯露分, 王红玉, 苏勇, 朱伟云. 生长猪结肠乳酸菌菌群的昼夜节律性变化. 微生物学报, 2022, 62(11): 4494–4504. 47. 陈圣蕾,林爱莲,闫晓曦,朱崇淼,苏勇. 补饲发酵酸奶对断奶仔猪生长性能、养分消化和粪便菌群结构的影响. 动物营养学报. 2022,34(8):4904-4918. 48. 夏鹏轲,王红玉,张贺,苏勇,朱伟云.限时采食对猪生长性能和肝代谢的影响.畜牧兽医学报.2022,53(7):2228-2238. 49. 陈雪,任二都,苏勇.早期灌喂母源粪菌对新生仔猪肠道菌群发育的影响. 微生物学报, 2018, 58(7) :1224-1232. 50. 李宗凯,陆扬,刘家俊,苏勇. 益生菌对生长育肥猪生长性能、肉品质和结肠菌群的影响. williamhill中文官网学报,2020,43(3):523-528. 51. 张贺,徐荣莹,苏勇,朱伟云. 单胃动物肠道微生物研究进展. 动物营养学报,2020,32(10):4674-4685. 52. 马力,苏勇(通讯作者),朱伟云.高脂肪日粮和产甲烷菌抑制剂对C57BL/6J 小鼠盲肠微生物及脂肪代谢的影响.微生物学报, 2014, 54(2) :167-172. 53. 苏勇,谢飞,朱伟云. 健康与腹泻仔猪粪样中挥发性脂肪酸和菌群区系的比较.微生物学报, 2011, 51(12) :1632-1638. 54. 艾丽霞,苏勇(通讯作者) ,朱伟云. 梅山与长白母猪粪样微生物体外发酵八种纤维底物的特性比较. 草业学报, 2013, 22:99-107. 55. 边高瑞,谢飞,苏勇(通讯作者),朱伟云. 应用16S rRNA基因分子技术研究仔猪结肠梭菌Ⅳ群变化. 微生物学报,2010,50(10):100-106. 56. 苏勇,姚文,朱伟云. 代表性差异分析比较两株来自不同地区的猪源Lactobacillus菌株. 微生物学报,2008,48(5):577-582. 57. 苏勇,姚文,朱伟云. 益生菌Lactobacillus amylovorus S1对仔猪后肠菌群的影响. 微生物学报,2006,46,(6):961-966. 58. 苏勇,朱伟云. 分子生物学技术在胃肠道微生态中应用研究进展. 生物技术通报,2006,4:73-77. 59. 苏勇,姚文,黄瑞华,朱伟云. 芽孢乳杆菌S1对断奶前后仔猪肠道乳酸菌、大肠杆菌和挥发性脂肪酸含量变化的影响. 福建农林大学学报,2006,35(1):73-76. 60. 苏勇,朱伟云. 仔猪哺乳期和断奶后胃中细菌和乳酸杆菌菌群的变化. 肠外与肠内营养,2006,13(1):1-4. 61. 苏勇,毛胜勇,姚文,朱伟云. 大豆黄酮、脱脂乳对猪源芽孢乳杆菌S1耐受酸和胆盐的影响. williamhill中文官网学报,2005,28(1):128-130. |